

EUROPEAN COURT OF AUDITORS

Report on the ECA's 2021 Carbon Footprint

Calculation of the ECA's carbon footprint (Bilan Carbone[®] methodology)

ECA 2021 Carbon Footprint Report

- **Executive summary**
- Context of study
- **Overview of Bilan Carbone[®] method**
- **Overall results**

3

Sesults by scope

ECA 2021 Carbon Footprint Report

- **Executive summary**
- Context of study
- **Overview of Bilan Carbone® method**
- **Overall results**

3

Sesults by scope

Three

buildings

"Digital" was the largest source of emissions

7 578 tCO₂e

Total 2021 GHG emissions 8 tCO2e/FTE1 (total uncertainties 16%)

Overall decrease in emissions since 2014

¹ Full-time equivalent.

ECA 2021 Carbon Footprint Report

Executive summary

2 Context of study

- **Overview of Bilan Carbone[®] method**
- **Overall results**

3

B Results by scope

2 Eco-Management and Audit Scheme.

2021

ECA draws on experience of GHG

protocol methodology and works on

2022

BC[®] update

long-term emission reduction plan

Main changes for 2022 carbon footprint assessment:

The objective of the study was to provide a **high-quality estimate of the greenhouse gas emissions** produced by the European Court of Auditors, using the Bilan Carbone[®] methodology.

To this end, the ECA conducted a survey on commuting in order to update its data on staff transport choices and modal share. The teleworking rate and results were calculated using the number of staff on-site days based on access data.

The main changes in relation to the 2021 carbon footprint assessment were as follows:

- the Bilan carbone[®] included comparisons with 2014 and 2020;
- as in 2020, carbon emissions from teleworking were reported due to the COVID situation; hotel nights and IT carbon emissions were included to analyse the impact of digitalisation;
- all IT emissions were reported in the "digital" category, including purchase of IT supplies and services;
- the 2021 renovation work on the K2 building was included in "capital goods" (1 699 m²);
- emission factors were updated.

ECA 2021 Carbon Footprint Report

- **Executive summary**
- Context of study
- **3** Overview of Bilan Carbone[®] method
 - **Overall results**
- Besults by scope

Overview of the Bilan Carbone® method

The Bilan Carbone[®] method was developed in 2004 by the French Environment and Energy Management Agency (ADEME) to quantify organisations' GHG emissions.

The method covers the following gases:

 ✓ Kyoto Protocol gases: CO₂, CH₄, N₂O, SF₆, NF₃, hydrofluorocarbons (C_nH_mF_p), perfluorocarbons (C_nF_{2n+2});

✓ CFCs;

✓ water vapour emitted by planes in the stratosphere.

The method multiplies each organisation's activity data by an emission factor (EF), as it is not feasible to measure GHG emissions directly.

1 - Collect activity data

2- Use the emission factors from the Bilan Carbone® database

3- Visualize and analyze the results

Operational scope of the Bilan Carbone® method in 2021

The ECA's carbon footprint includes direct and indirect GHG emissions (scopes 1, 2 and 3).

Overview of carbon footprint methods

Temporal and organisational boundaries

Bilan Carbone[®] **approach**: operational control approach **Temporal scope**: ECA activities in 2021

Organisational scope: three buildings in Luxembourg (K1, K2, K3)

Building	Area (m²)	FTE
K1	23 766	293
К2	17 587	100
КЗ	28 240	561
		Indated 2021 data

Buildings include office space, basements, underground car parks, two cafeterias, a canteen, archives, a library, walkways between buildings, and other amenities.

Activities of ECA officials and other staff: 954.5 full-time equivalent employees (FTEs) at end 2021

ECA 2021 Carbon Footprint Report

- **Executive summary**
- Context of study
- **Overview of Bilan Carbone® method**
- **Overall results**

3

Besults by scope

2021 Bilan Carbone® results

- ✓ Total GHG emissions 7 578 tCO₂e
- ✓ Largest sources of emissions:
 - **digital (28%)**

1 711

Capital goods

3 0 0 0

2 5 0 0

2 0 0 0

1 0 0 0

500

0

1 500 tCO2

goods and services purchased (26%)

1 2 4 6

Energy in-house

- capital goods (23%)
- energy in-house (16%)
- ✓ Transport of people, non-energy in-house, waste, teleworking and transport of goods made up the remaining 8%

38

Non-energy in-house Transport of people

417

0

Transportation of

goods

Emissions by building - Bilan Carbone®

Emissions were divided between the buildings according to staff headcount.

Building	FTE	Share (%)
K1	293.5	31%
К2	100.5	10%
КЗ	560.5	59%
Total	954.5	100%

K3 houses the most staff and produces the largest share of emissions

Total GHG emissions by building

■ K1 ■ K2 ■ K3

Emissions categories by building

Unassigned FTEs were equally distributed between the three buildings. CETREL's and Bersdof's emissions (110 tCO2e) are not included in this slide.

purchased

Bilan Carbone[®] comparison with previous years

Overall, emissions rose 23% between 2020 and 2021 and dropped 29% from 2014

4%

-9%

Capital goods

6441 711

Emission sources tCO ₂ e*	2014	2020	2021	Change 2014-2021	Change 2020-2021
Capital goods	1 875	1 644	1 711	-9% 🔰	4% 🞵
Energy in-house	1 840	1 004	1 246	-32% 🔰	24% 🞵
Non-energy in-house	82	143	38	-54% 🔰	-74% 🔰
Transport of people	4 020	390	417	-90% 🎽	7% 🞵
Transportation of goods	16	3	0	-98% 🍾	-88%
Waste	34	30	34	1% 🞵	13% 🞵
Teleworking	0	93	72		-23% 🔰
Digital	1 245	1 837	2 105	69% 🗖	15% 🖊
Goods & services purchased	1 587	1 000	1 955	23% 🞵	95% 🖊
TOTAL	10 699	6 144	7 578	-29% 🔰	23% 🎵

ECA 2021 Carbon Footprint Report

- **Executive summary**
- Context of study
- **Overview of Bilan Carbone® method**
- **Overall results**

3

5 Results by scope

Data and assumptions

- ✓ Internal digital use Energy emissions related to data centers K3, CETREL and Bersdorf
- ✓ External digital use

Emissions related to customer use of the ECA's website, Facebook, LinkedIn, Twitter, emails, reports and online videos

✓ IT equipment

IT inventory by goods type

	Type of emissions	tCO ₂ e	
	IT services	1 562	
Results	IT supplies	270	- 2036
nesares	IT equipment	204	
	Internal digital use	69	
	External digital use	0	
	Total	2 105	

Focus on IT services, supplies and equipment

Comparison between 2020 and 2021

Bilan Carbone[®](26%)

Data and assumptions

- ✓ Services: (see page 18)
- ✓ Meals: (see page 19)
- ✓ Paper: A4 80gr (95%) and A3 80gr/others (5%), converted into weight (5g/page)
- ✓ Water purchased: total water consumed in 2021
- ✓ Gifts: number and type of gifts converted into weight by type of material

	Type of goods or services	tCO ₂ e
	Services purchased	1 496
	Goods purchased	355
Results	Paper	5
nesuns	Meals	91
	Hotel nights during business trips	6
	Meals during business trips	2
	Water purchased	0
	Gifts	0
	Total	1 955

Total GHG emissions from goods and services purchased

Goods & services purchased

GHG emissions from services purchased

Services

Data and assumptions

Data provided: goods and services purchased by category type and amount in euros

Results

Type of service	tCO ₂ e
Repair, maintenance and installation services	656
Miscellaneous services	220
Translation services	115
Subscription services	59
Supporting transport services*	57
Cleaning services	51
Other	338
Total	1 496

Miscellaneous services were assigned an average services emission factor extrapolated from the Bilan Carbone[®] database.

These services ranged from equipment rentals to training (language classes, etc.), painting, document destruction, etc.

Meals

Results

Data and assumptions

- Number of meals and quantities of organic and non-organic meat (pork, beef, chicken) and fish purchased
- Calculations used only the proteins provided by the service provider
- ✓ Meals were broken down by quantities purchased (39% chicken, 22% beef, 16% pork, 17% fish)

Type of meal	tCO ₂ e
Typical meals (with beef)	57
Typical meals (with chicken)	22
Typical meals (with pork)	7
Fish meals	5
Vegetarian meals	0
Total	91

Replacing a pork dish with a vegetarian dish would reduce the meal's carbon impact by 50%

Goods & services purchased

Goods & services purchased

Comparison with previous years

GHG emissions (tCO ₂ e)	2014	2020	2021	Change 2014-2021	Change 2020-2021
Total goods and services purchased	1 587	1 000	1 955	23% 🗡	95% 🗡

A few categories were transferred from "Purchased Services" (2020) to "IT" (2021)

Goods & services purchased

d 🚮

Comparison with previous years – focus on main services

Sum of Expenditures 2020 (k€)

:) ■ Sum of Expenditures 2021 (k€)

• Sum of CO2 Emissions 2020 (in tCO2e)

• Sum of CO2 emissions 2021 (in tCO2eq)

Bilan Carbone[®] (23%)

Data and assumptions

- Buildings and car parks: parking and office space (m²) Renovation work included in building emissions (+1699 m²) Depreciation: 40 years
- Building assets: generators, refrigerators, air conditioning units, machinery etc. (units per building); furniture, equipment and tools (per building by purchase price) Depreciation: 8 years
- Vehicles: model of leased and owned vehicles across all three buildings
 Depreciation: A years

Depreciation: 4 years

	Type of capital goods	tCO ₂ e
Results	Buildings	1 235
	Building assets	382
	Vehicles	94
	Total	1 711

Total GHG emissions from capital goods

Capital goods

Capital goods

Comparison between 2020 and 2021

GHG emissions tCO ₂ e	2014	2020	2021	Change 2014-2021	Change 2020-2021
Total capital goods	1 875	1 644	1 711	-9 % 🛛 🖌	+4% 🞵

Net office space has changed due to building development and renovation

26

Bilan Carbone[®] (16%)

Data and assumptions

✓ Electricity consumption:

The ECA purchases guaranteed green electricity, but the Bilan Carbone[®] calculates actual electricity consumption from the national grid (location-based).

✓ Heat consumption: 2021 consumption for each building. The emission factor is determined by Luxembourg city authorities.

Deculto	Type of energy source	tCO ₂ e
Results	Electricity	720
	Heating	526
	Total	1 246

Energy (in-house)

Total GHG emissions from energy

Comparison with previous years

GHG emissions tCO ₂ e	2014	2020	2021	Change 2014-2021	Change 2020-2021
Total energy	1 840	1 004	1 246	-32% 🍾	+24% 🗖

The K3 building logically accounts for the greatest share of energy emissions

Fuel

Heating

2021 Emissions by building

Electricity

Bilan Carbone®(6%)

Data and assumptions

Emission sources

- ✓ Staff commuting and use of official cars for non-business travel (2022 survey on 2021 habits)
- ✓ Business travel (under "use of official cars")
- ✓ Visitor travel

Type of transportation		tCO ₂ e
Results	Staff commuting	305
	Business travel	85
	Visitor travel	27
	Total	417

Emissions from the transport of people by travel category

Staff commuting

Data provided

✓ ECA data: 2022 staff commuting survey

Hypothesis

✓ Excluding teleworking days

	Staff commuting	tCO ₂ e	km
	Car	211	1 092 304
	Official car – petrol	39	13 709
	Official car – diesel	20	6 410
	Bus	29	212 769
Eutopoloto d	Train	4	91 636
Extrapolated	Motorbike	2	14 138
results	Tram	0	66 954
	E-bike	0	5 201
	E-scooter	0	314
	Bicycle	0	33 329
	On foot	0	33 094
	Total	305	1 569 858

⁵ Carbon footprint calculation for official cars in litres.

Number of litres transposed to km with average consumption for comparison.

Cars: 89% of GHG emissions; 71% of kilometres travelled

Business travel

Data provided

Total kilometres by mode of transport Car: Private, official and rented cars

Results

Business travel	tCO ₂ e	km
Air – short-haul – economy	60	351 270
Car	23	39 479
Train	1	33 409
Other: electricity	1	2 664
Air – long-haul	0	774
Bus	0	256
Total	85	427 852

The travel agency reported a total of 33 tCO2e for short-haul air travel. This difference could be due to the fact that aircraft can affect climate through other emissions and atmospheric processes (H20, NOx, sulfate, contrails, etc.). There are still significant scientific uncertainties about their estimation. The French Ministry (ADEME) recommends including contrails.

Train: 2% of GHG

emissions; 8% of kilometres travelled

GHG emissions from business travel

Kilometres⁵ travelled for business travel

⁵ Carbon footprint calculation for official cars in litres.

Number of litres transposed to km with average consumption for comparison.

Sources of 2021 GHG emissions from

Visitor travel

Data provided

Number of visitors in 2021 by country of origin:

- ✓ 25 visits
- ✓ 89 visitors

Assumptions regarding mode of transport

- ✓ Short-haul aircraft: EU-ES
- ✓ Car: BE-LU
- ✓ Bus: DE
- ✓ Train: FR

	Visitor travel	tCO ₂ e	km
Results	Long-haul aircraft	19	119 064
	Short-haul aircraft	7	39 026
	Car	1	5 566
	Train	0	3 228
	Total	27	166 884

Plane: 95% of GHG emissions; 95% of kilometres travelled

5 *EcoAct* used its internal distance calculator to estimate the distance **between the country of origin** and Luxembourg, multiplied by two for the round-trip distance.

71%

Passenger transport

Comparison with previous years

GHG emissions tCO ₂ e	2014	2020	2021	Change 2014-2021	Change 2020-2021
Total transport	4 020	390	417	-90% 🔰	+7% 🞵

≅2014 **⊗**2020 **■**2021

Passenger transport

Comparison with previous years – focus on staff commuting

Bilan Carbone[®] (1%)

Data and assumptions

✓ Heating

Emissions related to home heating: natural gas, fuel oil, heat pump, electricity and green electricity for GHG protocol, district heating and wood

✓ Laptops and screens

Emissions related to the energy consumption of IT equipment (electricity and green electricity for GHG protocol)

Results

Bilan Carbone® (tCO2e)	2021	2020
Heating	67	78
Laptop	3	10
Screens	2	5
Total	72	93

Bilan[®] Carbone emissions from teleworking

Non-energy in-house

Bilan Carbone[®] (1%)

Data and assumptions

Refrigerant gases: cooling equipment refilled with refrigerant gases in 2021 (R134a, R404a, R407a and R452a). Refills were viewed as leaks.

Results and comparison with previous years

GHG emissions tCO ₂ e	2014	2020	2021	Change 2014-2021	Change 2020-2021
R134A	64	98	25	-61% 🌂	-75% 🌂
R452A	0	33	0		
R407C	18	6	13	-28% 🔌	100% 🗖
R404A	0	6	0		
Total	82	143	38	-54% 🌂	-74% 🌂

0%

-100%

33

R452A

Total non-energy GHG emissions

0%

0

-100%

R404A

0

Refrigerant gases have a huge impact, with one tonne equivalent to:

- R134a: 1 300 tCO₂
- R407a: 3 940 Tco₂

≥2014 ≥2020 ≥2021

- R404c: 1 620 tCO₂
- R452a: 2 141 tCO₂

100%

R407C

-28%

18

-61%

Bilan Carbone®(<1%)

Data and assumptions

✓ Waste

Non-hazardous: food and household waste, plastics, paper, cardboard and glass packaging

Hazardous: wastewater and sewage, light bulbs and fluorescent tubes, packaging waste containing harmful products, scrap metal, batteries, accumulators and electronic waste

✓ Water use (sewage)

Data: based on water consumption, allocated to buildings based on occupancy

	Type of waste	tCO ₂ e
	Non-hazardous waste	23
Results	Water	1
	Hazardous waste	10
	Total	34

Total GHG emissions from waste

tC02eq

Comparison with previous years

GHG emissions tCO ₂ e	2014	2020	2021	Change 2014-2021	Change 2020-2021
Total waste	34	30	34	+1% 🗡	+13% 🖊

The scope changed between 2014 and 2020/2021: waste from third parties (service providers and subcontractors) is now included.

Accuracy of data on end life of waste has improved.

Processing of food fats and oils improved from 2014 (worst case scenario incineration) to 2020/2021 (recycling/biological treatment).

Bilan Carbone[®] (<1%)

Data and assumptions

Transport by suppliers: Real data was available for 2021.

Results

Emission source		tkm	tCO ₂ e
Total transport of goods		1 341	0.4
92% decr		rease in tota	l tonnes per

92% decrease in total tonnes per kilometre for 2021 compared to 2020

Transportation of supplies

tco2eq

This report was created for the European Court of Auditors (ECA) by Argest S.A. and EcoAct France, using ECA data.

EUROPEAN COURT OF AUDITORS

Argest S.A.

15, rue Wurth-Paquet L-2737 Luxembourg +352 26 44 70 1 <u>mail@argest.eu</u> www.argest.lu

EcoAct France

35 rue de Miromesnil F-75008 Paris +33 1 83 64 08 70 <u>contact@eco-act.com</u> www.eco-act.com

European Court of Auditors

12, rue Alcide De Gasperi L-1615 Luxembourg +352 43 98 1 <u>ECA-info@eca.europa.eu</u>

www.eca.europa.eu

