



EUROPEAN COURT OF AUDITORS



# Report on the ECA's 2022 Carbon Footprint

Calculation of the ECA's carbon footprint (Bilan Carbone<sup>®</sup> method)



# ECA 2022 Carbon Footprint Report



- Executive summary
- 2 Context of study
- **Overview of Bilan Carbone® method** 
  - **Overall results**
- Besults by scope

# ECA 2022 Carbon Footprint Report



- **Executive summary**
- 2 Context of study
- **Overview of Bilan Carbone® method** 
  - **Overall results**
- Besults by scope













Total 2022 GHG emissions

8 tCO<sub>2</sub>e/FTE<sup>1</sup> (total uncertainties 10 %)



-25 % Overall decrease in emissions since 2014

<sup>1</sup> Full-time equivalent.

# ECA 2022 Carbon Footprint Report



### **Executive summary**

2 Context of study

- **Overview of Bilan Carbone® method** 
  - Overall results
- 6 Results by scope



### Context of the study

### 2013



6

2 Eco-Management and Audit Scheme.



### Main changes for 2022 carbon footprint assessment

The objective of the study was to provide a **high-quality estimate of the greenhouse gas emissions** produced by the European Court of Auditors, using the Bilan Carbone<sup>®</sup> methodology.

To this end, the ECA conducted a survey on commuting in order to update its data on staff transport choices and modal share. The teleworking rate and results were calculated using the number of staff on-site days based on access data.

The main changes in relation to the 2022 carbon footprint assessment were as follows:

- the Bilan carbone<sup>®</sup> included comparisons with 2014, 2019 and 2021;
- external IT consultants (60,2 FTE) worked on site in 2022 (they were all teleworking in 2021);
- data for meals with meat was estimated by extrapolation based on the proportion of meat purchased in 2019 and the number of tickets sold for vegetarian meal in 2022;
- all IT emissions were reported in the "digital" category, including purchase of IT supplies and services;
- the 2022 renovation work on the K2 building was included in "capital goods" (5 097 m<sup>2</sup>);
- emission factors were updated.

# ECA 2022 Carbon Footprint Report



- **Executive summary**
- 2 Context of study
- **3** Overview of Bilan Carbone<sup>®</sup> method
  - **Overall results**
- Besults by scope



# Overview of the Bilan Carbone® method

The Bilan Carbone<sup>®</sup> method was developed in 2004 by the French Environment and Energy Management Agency (ADEME) to quantify organisations' GHG emissions.



#### The method covers the following gases:

- ✓ Kyoto Protocol gases: CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, SF<sub>6</sub>, NF<sub>3</sub>, hydrofluorocarbons (C<sub>n</sub>H<sub>m</sub>F<sub>p</sub>), perfluorocarbons (C<sub>n</sub>F<sub>2n+2</sub>);
- ✓ CFCs;
- ✓ water vapour emitted by planes in the stratosphere.

The method multiplies each organisation's activity data by an emission factor, as it is not feasible to measure GHG emissions directly.



# Overview of carbon footprint methods

1 - Collect activity data

3



#### 2- Use the emission factors from the Bilan Carbone® database



3- Visualize and analyze the results





### **Operational scope of the Bilan Carbone® method in 2022**



The ECA's carbon footprint includes direct and indirect GHG emissions (scopes 1, 2 and 3).



# Overview of carbon footprint methods

### **Temporal and organisational scope**

**Bilan Carbone<sup>®</sup> approach**: operational control approach **Temporal scope**: ECA activities in 2022

Organisational scope: three buildings in Luxembourg (K1, K2, K3)

| Building | Area (m²) | FTE               |
|----------|-----------|-------------------|
| K1       | 22 404    | 286.2             |
| К2       | 17 979    | 205.6             |
| КЗ       | 28 240    | 477.0             |
|          | l         | Jpdated 2022 data |



Buildings include office space, basements, underground car parks, two cafeterias, a canteen, archives, a library, walkways between buildings, and other amenities.

Activities of ECA officials and other staff: 968.8 full-time equivalent employees (FTE) as at end of 2022

# ECA 2022 Carbon Footprint Report



- **Executive summary**
- 2 Context of study
- **Overview of Bilan Carbone® method**
- 4 Overall results
- B Results by scope



# **Overall results**









### **Emissions by building**

# Emissions were divided between the buildings according to staff headcount.

3 000



tCO<sub>2</sub>e

2 328

1 820

3 761

**7 909**<sup>3</sup>

Building

Κ1

К2

К3

TOTAL



■K1 ■K2 ■K3

3 Unassigned FTEs were equally distributed between the three buildings. Bersdorf's emissions (80 tCO<sub>2</sub>e) are not included in this slide.

0

Total GHG emissions by building

purchased

3 761



# **Overall results**

### Comparison with previous years

Overall, emissions rose by 6 % between 2021 and 2022 and have fallen by 25 % since 2014

| Emission sources tCO e     | 2014   | 2019  | 2021  | 2022  | Change    | Change    | Change    |
|----------------------------|--------|-------|-------|-------|-----------|-----------|-----------|
|                            | 2014   | 2015  | LULI  | LULL  | 2014-2022 | 2019-2022 | 2021-2022 |
| Capital goods              | 1 875  | 1.829 | 1 683 | 1.637 | -13% 🔰    | -10% 🌂    | -3% 🎽     |
| Energy in-house            | 1 840  | 1.788 | 1 246 | 1.159 | -37% 🔰    | -35% 🌂    | -7% 🌂     |
| Non-energy in-house        | 82     | 47    | 38    | 106   | +30% 🎵    | +128% 🖊   | +182% 🖊   |
| Passenger transport        | 4 020  | 3.550 | 417   | 1.934 | -52% 🏼    | -46% 🎽    | +364%7    |
| Transportation of goods    | 16     | 5     | <1    | <1    | -99% 🔰    | -95% 🏼    | -43% 🏼    |
| Waste                      | 34     | 25    | 36    | 34    | 0%        | +38% 🎵    | -6% 🏼     |
| Teleworking                | /      | /     | 72    | 69    | /         | /         | -4% 🏼     |
| Digital                    | 1 245  | 478   | 2 105 | 1.126 | -10% 🎽    | +136%7    | -47% 🎽    |
| Goods & services purchased | 1 587  | 1.710 | 1 972 | 1.924 | +21% 🖊    | +13% 🎵    | -2% 🎽     |
| TOTAL                      | 10 699 | 9 430 | 7 569 | 7 989 | -25% 🍾    | -15% 🍾    | +6% 🞵     |



# ECA 2022 Carbon Footprint Report



- **Executive summary**
- 2 Context of study
- **Overview of Bilan Carbone® method**
- Overall results
- 5 Results by scope



# Passenger transport (24%)

#### Data and assumptions

#### **Emission sources**

- ✓ Staff commuting and use of official cars for non-business travel (2022 survey on 2022 habits)
- ✓ Business travel (including "use of official cars")
- ✓ Visitor travel

|         | Type of transportation | tCO <sub>2</sub> e |
|---------|------------------------|--------------------|
| Results | Staff commuting        | 1 055              |
|         | Business travel        | 445                |
|         | Visitor travel         | 434                |
|         | Total                  | 1 934              |

# Passenger transport

# Emissions from passenger transport by travel category





# Passenger transport



# Staff commuting

#### Data provided

✓ ECA data: 2022 staff commuting survey

#### Hypothesis

✓ Excluding teleworking days

|                         | Staff commuting                   | tCO <sub>2</sub> e | km        |
|-------------------------|-----------------------------------|--------------------|-----------|
|                         | Car                               | 820                | 4.021.227 |
|                         | Bus                               | 161                | 796.916   |
|                         | <b>Official cars</b> <sup>4</sup> | 34                 | 181.442   |
| Extrapolated<br>results | Carpooling                        | 15                 | 69.936    |
|                         | Train                             | 14                 | 343.218   |
|                         | Motorbike                         | 10                 | 52.954    |
|                         | Tram                              | 1                  | 250.772   |
|                         | E-bike                            | <1                 | 19.479    |
|                         | E-scooter                         | <1                 | 1.177     |
|                         | Bicycle                           | 0                  | 124.833   |
|                         | On Foot                           | 0                  | 123.951   |
|                         | TOTAL                             | 1.055              | 5.985.903 |

Cars: 83% of GHG emissions; 71% of kilometres travelled



#### **Kilometres travelled for commuting**



4 Carbon footprint calculation for official cars in litres or kWh. Number of litres and kWh consumption transposed to km with average consumption for comparison.



# Passenger transport



### **Business travel**

#### Data provided

Total kilometres by mode of transport Car: Private, official and rented cars

#### Results

| Business travel            | tCO <sub>2</sub> e | km        |
|----------------------------|--------------------|-----------|
| Air – short-haul – economy | 219                | 1 290 363 |
| Air – long-haul            | 132                | 811 316   |
| Car – diesel or petrol     | 88                 | 200 473   |
| Train                      | 5                  | 115 125   |
| Bus                        | <1                 | 3 552     |
| Car – electric             | <1                 | 3 364     |
| Boat                       | <1                 | 1863      |
| TOTAL                      | 445                | 2 426 056 |

The travel agency reported a total of 33 tCO<sub>2</sub>e for short-haul air travel. This difference could be due to the fact that aircraft can affect climate through other emissions and atmospheric processes (H20, NOx, sulfate, contrails, etc.). There are still significant scientific uncertainties about their estimation. The French Ministry (ADEME) recommends including contrails.

> Train: 1 % of GHG emissions; 5 % of kilometres travelled





#### **Kilometres travelled for business travel**





# Passenger transport



### Visitor travel

#### Data provided

Number of visitors in 2022:

- ✓ 79 visits
- ✓ 1 464 visitors

#### Assumptions regarding mode of transport

- ✓ Short-haul aircraft: EU
- ✓ Car: BE-LU
- ✓ Bus: DE
- ✓ Train: FR

|         | Visitor travel      | tCO <sub>2</sub> e | km        |
|---------|---------------------|--------------------|-----------|
| Results | Short haul aircraft | 269                | 1 583 941 |
|         | Bus                 | 95                 | 467 985   |
|         | Long haul aircraft  | 53                 | 328 396   |
|         | Car                 | 11                 | 48 132    |
|         | Train               | 7                  | 180 768   |
|         | TOTAL               | 435                | 2 609 222 |

Plane: 74% of GHG emissions; 73% of kilometres travelled





### Comparison with previous years

-36%

1 188

**Employee** Commuting

| GHG emissions<br>tCO <sub>2</sub> e | 2014  | 2019  | 2021 | 2022  | Change<br>2014-2022 | Change<br>2019-2022 | Change<br>2021-2022 |
|-------------------------------------|-------|-------|------|-------|---------------------|---------------------|---------------------|
| Total transport                     | 4 020 | 3 550 | 417  | 1 934 | -52% 🍾              | -46% 🍾              | +364% 🞵             |

**36%** reduction in GHG emissions from **staff commuting** in 2022 compared to 2014, mainly due to the decrease in kilometres travelled by car

 $tCO_2e$ 

1 640



Business travel

≥ 2014 ≥ 2019 ≥ 2021 ≥ 2022

Visitor travel



Goods & services purchased



### Goods & services purchased (24 %)

Data and assumptions

- ✓ Services: (click here to go to the slide)
- Meals: (click here to go to the slide)
- Paper: A4 75gr (95 %) and A3 75 gr/others (5 %), converted into weight (5 g/page)
- ✓ Water purchased: total water consumed in 2022
- ✓ **Gifts:** number and type of gifts converted into weight by type of material

|         | Type of goods or services          | tCO <sub>2</sub> e |
|---------|------------------------------------|--------------------|
|         | Services purchased                 | 1 351              |
|         | Goods purchased                    | 409                |
|         | Meals                              | 119                |
| Results | Hotel nights during business trips | 25                 |
|         | Paper                              | 13                 |
|         | Meals during business trips        | 5                  |
|         | Water purchased                    | <1                 |
|         | Gifts                              | <1                 |
|         | Total                              | 1 924              |

# Total GHG emissions from goods and services purchased





Goods & services purchased

# Comparison with previous years

| GHG emissions (tCO <sub>2</sub> e)    | 2014  | 2019  | 2021  | 2022  | Change<br>2014-2022 | Change<br>2019-2022 | Change<br>2021-2022 |
|---------------------------------------|-------|-------|-------|-------|---------------------|---------------------|---------------------|
| Total goods and services<br>purchased | 1 587 | 1 710 | 1 972 | 1 924 | +21%                | +13%                | -2% 🎽               |

A few categories have been transferred from "Purchased services" to "Digital" since 2020.





# Goods & services purchased



### Services

Data and assumptions

Data provided: goods and services purchased by category type and amount in euros

#### Results

| Type of service                                            | tCO <sub>2</sub> e |
|------------------------------------------------------------|--------------------|
| Repair, maintenance and installation services              | 401                |
| Cleaning services                                          | 212                |
| Travel agencies                                            | 193                |
| Miscellaneous services                                     | 189                |
| Translation services                                       | 94                 |
| Library, archives, museums and other cultural services     | 82                 |
| Interpretation services                                    | 35                 |
| Labour recruitment and provision of personnel services     | 33                 |
| Architect, engineering, construction & related consultancy | 31                 |
| Other                                                      | 82                 |
| Total                                                      | 1 351              |

#### GHG emissions from services purchased



Miscellaneous services were assigned an average services emission factor extrapolated from the Bilan Carbone<sup>®</sup> database. These services ranged from equipment rentals for training (language classes, etc.), painting, document destruction, etc. The 'Other' category includes advertising and marketing services, health and social work services, insurance & pension services, postal and

courier services, sewage/disposal, real estate services.



# Goods & services purchased



### Meals

#### Data and assumptions

- ✓ Number of meals
- ✓ Data for meat dishes is estimated by extrapolation based on the breakdown of meat dishes in 2019 and the breakdown of meat vs vegetarian dishes sold in 2022
- Meat meals were broken down by quantities purchased in 2019 (27 % fish, 23 % beef, 19 % chicken, 16 % pork)

| Results  | Type of meal                 | tCO <sub>2</sub> e |
|----------|------------------------------|--------------------|
| iteoureo | Typical meals (with beef)    | 80                 |
|          | 14                           |                    |
|          | Typical meals (with chicken) | 14                 |
|          | Typical meals (with pork)    | 7                  |
|          | 4                            |                    |
|          | Total                        | 119                |

Replacing beef with chicken would reduce carbon impact by 50 %

#### **GHG** emissions from meals



Replacing beef with vegetarian option would reduce carbon impact by 144 %



### Capital goods (20%)

Data and assumptions

- Buildings and car parks: parking and office space (m<sup>2</sup>) Renovation work included in building emissions (+5 097 m<sup>2</sup>) Depreciation: 40 years
- Building assets: generators, refrigerators, air conditioning units, machinery etc. (units per building); furniture, equipment and tools (per building by purchase price)
   Depreciation: 8 years
- Vehicles: model of leased and owned vehicles across all three buildings

Depreciation: 4 years

|         | Type of capital goods | tCO <sub>2</sub> e |
|---------|-----------------------|--------------------|
| Results | Buildings             | 1 150              |
|         | Building assets       | 393                |
|         | Vehicles              | 94                 |
|         | Total                 | 1 637              |

# Capital goods



#### Total GHG emissions from capital goods









### Comparison with previous years





### Energy (in-house) (15%)

#### Data and assumptions

✓ Electricity consumption:

The ECA purchases guaranteed green electricity, but the Bilan Carbone<sup>®</sup> method calculates actual electricity consumption from the national grid (location-based).

 Heat consumption: 2022 consumption for each building. Energy mix communicated by the heating plant manager.

|         | Type of energy source | tCO <sub>2</sub> e |
|---------|-----------------------|--------------------|
| Results | Electricity           | 738                |
|         | Heating               | 413                |
|         | Fuel                  | 8                  |
|         | Total                 | 1 159              |

# Energy (in-house)

#### Total GHG emissions from energy





# Energy (in-house + EDC)

### Comparison with previous years

| GHG emissions<br>tCO <sub>2</sub> e | 2014  | 2019  | 2021  | 2022  | Change<br>2014-2022 | Change<br>2019-2022 | Change<br>2021-2022 |
|-------------------------------------|-------|-------|-------|-------|---------------------|---------------------|---------------------|
| Total energy                        | 1 840 | 1 788 | 1 246 | 1 159 | -37%                | -35% 🔰              | -7% 🎽               |

The K3 building logically accounts for the greatest share of energy emissions





### Digital (14%)

#### Data and assumptions

- ✓ Internal digital use
  Energy emissions related to K3 and Bersdorf data centres
- ✓ External digital use

Emissions related to customers' to the ECA's website (including viewing of reports and online videos), Facebook, LinkedIn and Twitter pages, and email communication with the ECA

✓ IT equipment

IT inventory by goods type



### . . . . . . . . .

Digital



#### Focus on IT services, supplies and equipment







### Comparison with previous years





### Non-energy in-house (1%)

#### **Data and assumptions**

25

R134A

Refrigerant gases: cooling equipment refilled with refrigerant gases in 2022 (R134a, R407c and R452a). Refills were treated as leaks.

#### **Results and comparison with previous years**



0

1

0

R404A

0

18

13

0

0 111

R407C

# Non-energy in-house





R452A



### Teleworking (1%)

#### Data and assumptions

#### ✓ Heating

Emissions related to home heating: natural gas, fuel oil, heat pump, electricity and green electricity for GHG Protocol, district heating and wood

#### ✓ Laptops and screens

Emissions related to the energy consumption of IT equipment (electricity and green electricity for GHG Protocol)

#### Results

| Teleworking | 2021<br>tCO <sub>2</sub> e | 2022<br>tCO <sub>2</sub> e |  |
|-------------|----------------------------|----------------------------|--|
| Heating     | 67                         | 64                         |  |
| Screens     | 2                          | 3                          |  |
| Laptop      | 3                          | 2                          |  |
| Total       | 72                         | 69                         |  |





# Bilan<sup>®</sup> Carbone emissions from teleworking







#### Total GHG emissions from waste



# Waste <1%

#### Data and assumptions

#### ✓ Waste

Non-hazardous: food and household waste, plastics, paper, cardboard and glass packaging

Hazardous: wastewater and sewage, light bulbs and fluorescent tubes, packaging waste containing harmful products, scrap metal, batteries, accumulators and electronic waste

#### ✓ Water use (sewage)

Data: based on water consumption, allocated to buildings based on occupancy

|         | Type of waste       | tCO <sub>2</sub> e |
|---------|---------------------|--------------------|
| Results | Hazardous waste     | 21                 |
|         | Non-hazardous waste | 11                 |
|         | Water               | 2                  |
|         | Total               | 34                 |





### Comparison with previous years

| GHG emissions<br>tCO <sub>2</sub> e | 2014 | 2019 | 2021 | 2022 | Change<br>2014-2022 | Change<br>2019-2022 | Change<br>2021-2022 |
|-------------------------------------|------|------|------|------|---------------------|---------------------|---------------------|
| Total waste                         | 34   | 25   | 36   | 34   | 0%                  | +38% 🎵              | -6% 🎽               |

■ 2014 ● 2019 ≥ 2021 ■ 2022

13

62%

Seope changed between 2014 and 2020/2021: waste from third parties (service providers and subcontractors) is now included.

Accuracy of data on end-of-life waste has improved.

Processing of food fats and oils improved between 2014 (incineration - worst case scenario) and 2020/2021 (recycling/biological treatment).





-40%





### Transport of goods <1 %

#### Data and assumptions

Transport by suppliers: Real data was available for 2022.

#### Results



Average distance per delivery in

2022: 24 km

This report was created for the European Court of Auditors (ECA) by 21 Solutions & COMASE, using ECA data.



EUROPEAN COURT OF AUDITORS





#### COMASE

361, Avenue Paul Pastur B-6032 Charleroi +32 71 299 120 <u>comase@comase.com</u> <u>www.comase.com</u>

#### **European Court of Auditors**

12, rue Alcide De Gasperi L-1616 Luxembourg +352 43 98 1 ECA-info@eca.europa.eu www.eca.europa.eu

### 21 Solutions

105, rue du Marché aux Herbes 1000 Bruxelles +32 2 502 99 93 <u>info@21solutions.eu</u> <u>www.21solutions.eu</u>